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Abstract. The standard model is reconstructed in a generalized differential geometry (GDG) based on
the idea of a real structure as proposed by Coquereaux et al. and Connes. The GDG considered in this
article is a kind of non-commutative geometry (NCG) on the discrete space that successfully reproduces
the Higgs mechanism of the spontaneously broken gauge theory. Here, a GDG is a direct generalization of
the differential geometry on an ordinary continuous manifold to the product space of this manifold with
a discrete manifold. In a GDG, a one-form basis χ on the discrete space is incorporated in addition to
the one-form basis dxµ on Minkowski space, rather than γ5 as in Connes’s original work. Although the
Lagrangians obtained in this way are the same as those obtained in our previous formulation of GDG, the
basic formalism becomes very simply and clear.

1 Introduction

The reconstruction of spontaneously broken gauge the-
ory in non-commutative geometry (NCG) on the discrete
space M4 × Z2 (in general, M4 × ZN ) has elucidated the
essence of the Higgs mechanism. It revealed that the Higgs
boson field is a kind of gauge field to be considered as a
connection on the discrete space. This approach was initi-
ated by Connes [1] in 1990, and since then many authors
have studied NCG on the discrete space and proposed[2–
22] many formulation variants.

We also proposed the χ formalism [15] in which we in-
troduce the one-form basis χ on the discrete space Z2
in addition to the ordinary one-form base dxµ on the
Minkowski space M4 to describe the generalized gauge
field containing the gauge and Higgs boson fields. This
formulation of NCG is very similar to the differential ge-
ometry on a continuous manifold. Thus, we call our formu-
lation a generalized differential geometry (GDG). Based
on this formulation, and adopting the fermion field of
the SO(10) grand unified theory (GUT), the standard
model was reconstructed [21] to yield, making reasonable
assumptions, the mass relation between the weak gauge
boson and the Higgs boson, together with the Weinberg
angle in the SO(10) GUT. However, in this construction,
the method of introducing the color gauge field is rather
awkward. The purpose of this paper is to modify this
method based on the idea of a real structure proposed
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by Coquereaux et al. and Connes [3] who introduced it
to incorporate the color gauge symmetry and explain the
anomaly-free condition.

Though the same subject was treated in our recent
paper [23], the NCG formulation given there is rather
different from that given in the present paper, especially
with respect to the representation of the fermion field and
the algebraic rule of the one-form χ. For this reason, the
present study is useful for the purpose of obtaining a bet-
ter understanding of the most natural mathematical struc-
ture underlying the standard model.

This article is divided into four sections. Section 2
presents the modifications of our previous formalism based
on the real structure operator obtained by introducing the
anti-fermion field in addition to the fermion field of the
SO(10) GUT. In this section, a geometrical picture for the
unification of the gauge and Higgs fields is realized, which
is the ultimate understanding in the NCG approach. Sec-
tion 3 represents an application to the reconstruction of
the standard model. Although the Lagrangians obtained
in this way are the same as those in our previous formula-
tion of NCG, the basic formulation becomes very simple
and clear. Section 4 is devoted to concluding remarks.

2 Basic formulation

The reformulation of the GDG presented in our previous
scheme [21] is performed by taking account of the idea
of the real structure proposed by Coquereaux et al. and
Connes [3]. The real structure operator J defined in this
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paper is hereafter explained in accordance with the GDG
formulation.

In [21], the fermion fields ψ(x, y) with arguments x and
y (y = +,−) on the product space M4 × Z2 are taken as

ψ(x,+) =
1√
2
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ub
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, (2.1)

where the subscripts L and R stand for the left-handed
and right-handed fermions, respectively, and the super-
scripts r, g and b represent the color indices. We must
consider three generations in the standard model. There-
fore, in precise notation, for example, u should be written
as (u, c, t)t with the superscript t defining the transpose
of the matrix. In this notation, ψ(x, y) is a vector in 24-
dimensional Hilbert space. In order to incorporate the real
structure into the GDG formulation, the fermion space H
is doubled into the direct sum of two Hilbert spaces H and
Hc representing particles and anti-particles, respectively.
The anti-particles ψc(x, y) in Hc are represented as

ψc(x,+) =
1√
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(2.2)

The role of J is to interchange ψ and ψc, and thus it is
essentially a charge conjugation operator. In precise nota-
tion, J in the present formulation is

J = Cσ2 ⊗ σ2 ⊗ 14 ⊗ 13, (2.3)

where σ2 is a Pauli matrix and C is the charge conjugation
operator. If Ψ(x, y) is written as

Ψ(x, y) =

(
ψ(x, y)
ψc(x, y)

)
, (2.4)

the operation of J in (2.3) on Ψ(x, y) yields

JΨ(x, y) = Ψ(x, y). (2.5)

Thus, the fermion field Ψ(x, y) is invariant under the real
structure operator J .

The structure of the Yang–Mills–Higgs (YMH) sector
is determined in correspondence with that of the fermion

spaceH⊕Hc. Following the reconstruction of the standard
model by Coquereaux et al. and Connes, the fundamental
functions ãi(x, y) and b̃i(x, y) are written as

ãi(x, y) =

(
ai(x, y) 0
0 cci (x, y)

)
,

b̃i(x, y) =

(
bi(x, y) 0
0 cci (x, y)

)
, (2.6)

where cci (x, y) is defined as

cci (x, y) = J ′ci(x, y)(J ′)† = σ2⊗14⊗13c∗i (x, y)σ2⊗14⊗13,
(2.7)

with the operator J ′ = iC σ2 ⊗ 14 ⊗ 13 and the aster-
isk ∗ indicating complex conjugation. The matrix-valued
functions ai(x, y) and ci(x, y) are the constituent func-
tions of the flavor and color gauge fields, respectively, and
these functions are expressed in 24× 24 matrix form, cor-
responding to the representations in (2.1) and (2.2).

The operation of the real structure operator on the
functions ã(x, y) and b̃(x, y) is given, using the operator J
in (2.3), by

Jãi(x, y)J† =

(
ci(x, y) 0
0 ac

i (x, y)

)
,

J b̃i(x, y)J† =

(
ci(x, y) 0
0 bci (x, y)

)
. (2.8)

With the functions ãi(x, y) and b̃i(x, y), we can sim-
plify the definition of the generalized gauge field A(x, y)
to

A(x, y) = 1
2

∑
i

(
b̃†i (x, y)dãi(x, y) + ã†

i (x, y)db̃i(x, y)
)
,

(2.9)
where the subscript i is required to insure that the gauge
fields included in (2.9) are realistic, as shown later. d in
(2.9) is the generalized exterior derivative defined as fol-
lows:

d = d + dχ,

df(x, y) = ∂µf(x, y)dxµ, (2.10)

dχf(x, y) = [−f(x, y)M̃(y) + M̃(y)f(x,−y)]χ,

where f(x, y) represents the function ãi(x, y) or b̃i(x, y),
dxµ is the ordinary one-form basis, taken to be dimension-
less, in Minkowski space M4, and χ is the one-form basis,
also assumed to be dimensionless, in the discrete space Z2.
Here we have introduced the x-independent matrix M̃(y)
which is written according to the representation in (2.6)
as

M̃i(y) =

(
M(y) 0
0 0

)
. (2.11)

The matrix M(y) appearing here turns out to determine
the scale and pattern of the spontaneous breakdown of
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the gauge symmetry in the flavor sector, and its hermitian
conjugation is given by M(y)† =M(−y). Equation (2.11)
indicates that the color symmetry of the strong interaction
does not break spontaneously.

In order to find explicit forms of the gauge and Higgs
fields according to (2.9) and (2.10), we need the following
important algebraic rule of non-commutative geometry:

f(x, y)χ = χf(x,−y), (2.12)

where f(x, y) represents any field defined on the discrete
space such as ãi(x, y), the gauge field, the Higgs field or
the fermion fields. It should be noted that (2.12) never ex-
presses the relation between the matrix elements of f(x,+)
and f(x,−) but insures a consistent product between the
fields expressed in differential form on the discrete space.
Equation (2.12) characterizes a non-commutative geome-
try in the present formulation. Using (2.10) and (2.12),
A(x, y) can be rewritten as

A(x, y) = Ãµ(x, y)dxµ + Φ̃(x, y)χ, (2.13)

where

Ãµ(x, y) =

(
Aµ(x, y) 0

0 Gc
µ(x, y)

)
, (2.14)

Φ̃(x, y) =

(
Φ(x, y) 0
0 0

)
. (2.15)

Aµ(x, y), Φ(x, y) and Gµ(x) are expressed using the con-
stituent fields ai(x, y) and ci(x, y) through

Aµ(x, y) =
1
2

∑
i

(
b†i (x, y)∂µai(x, y)

+ a†
i (x, y)∂µbi(x, y)

)
, (2.16)

Φ(x, y) =
1
2

∑
i

{
b†i (x, y) (−ai(x, y)M(y)

+M(y)ai(x,−y)) + a†
i (x, y) (−bi(x, y)M(y)

+M(y)bi(x,−y))} , (2.17)

Gµ(x, y) =
∑

i

c†i (x, y)∂µci(x, y), (2.18)

and they are identified with the gauge field in the flavor
sector, the Higgs field, and the color gauge field of the
strong interaction, respectively.

In order to identifyAµ(x, y) andGµ(x) with true gauge
fields, the following conditions have to be imposed:∑

i

b†i (x, y)ai(x, y) = 124, (2.19)

∑
i

c†i (x)ci(x) =
1
gs
124. (2.20)

Here, gs is a constant related to the corresponding cou-
pling constant as specified below. In general, we can set
the right-hand side of (2.19) equal to 1/gf . However, we
do not do this simply to avoid the complexity.

According to (2.8), the generalized gauge field Ã(x, y)
is transformed under the real structure operation as

JÃ(x, y)J† = J

(
A(x, y) 0
0 Gc(x, y)

)
J†

=

(
G(x, y) 0
0 Ac(x, y)

)
, (2.21)

where

A(x, y) = Aµ(x, y)dxµ + Φ(x, y)χ, (2.22)
G(x, y) = Gµ(x, y)dxµ. (2.23)

Equation (2.21) enables us to obtain the gauge invariant
Dirac Lagrangian, as shown below. It should be noted that
(dxµ)∗ = dxµ and χ∗ = χ.

Before constructing the gauge covariant field strength,
we address the gauge transformations of ãi(x, y) and
b̃i(x, y), which are defined as

ãg
i (x, y) = ãi(x, y)g̃(x, y), b̃gi (x, y) = b̃i(x, y)g̃(x, y).

(2.24)
Here, the gauge transformation function g̃(x, y) is ex-
pressed corresponding to (2.6) as

g̃(x, y) =

(
gf (x, y) 0
0 gc

c(x, y)

)
, (2.25)

where gf (x, y) and gc(x, y) are the gauge functions with
respect to the corresponding flavor unitary group and the
color SU(3)c group, respectively. It should be noticed that
gf (x, y) and gc(x) can both be chosen so as to commute
with each other, so that gc(x) commutes with ai(x, y),
bi(x, y) andM(y), and gf (x, y) commutes with ci(x). Then
we obtain the gauge transformation of A(x, y):

Ãg(x, y) = g̃−1(x, y)Ã(x, y)g̃(x, y)

+ g̃−1(x, y)


124 0

0
1
gs
124


dg̃(x, y), (2.26)

where use has been made of (2.9) and (2.20), and as in
(2.10),

dg̃(x, y) = ∂µg̃(x, y)dxµ

+ [−g̃(x, y)M̃(y) + M̃(y)g̃(x,−y)]χ. (2.27)
Using (2.26)–(2.31), we find the gauge transformations of
the gauge and Higgs fields as

Ag
µ(x, y) = g−1

f (x, y)Aµ(x, y)gf (x, y)

+g−1
f (x, y)∂µgf (x, y), (2.28)

Φg(x, y) = g−1
f (x, y)Φ(x, y)gf (x,−y)
+g−1

f (x, y)∂ygf (x, y), (2.29)

Gg
µ(x) = g−1

c (x)Gµ(x)gc(x) +
1
gs
g−1

c (x)∂µgc(x), (2.30)
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where we define the operator ∂y as

∂ygf (x, y) = [−gf (x, y)M(y) +M(y)gf (x,−y)]. (2.31)

Equation (2.29) is very similar to the other two equations,
(2.28) and (2.30), and so it strongly indicates that the
Higgs field is a kind of gauge field on the discrete space
M4 × Z2. From (2.31), (2.29) can be rewritten as

Φg(x, y) +M(y) = g−1
f
(x, y)(Φ(x, y) +M(y))g

f
(x,−y),
(2.32)

which makes it obvious that

H(x, y) = Φ(x, y) +M(y) (2.33)

is an un-shifted Higgs field whereas Φ(x, y) denotes a
shifted one with vanishing vacuum expectation value.

In addition to the algebraic rules in (2.10) we add an
important rule:

dχM̃(y) = M̃(y)M̃(−y)χ (2.34)

which yields, together with (2.10), the nilpotency of the
generalized exterior derivative d. The nilpotency of d is
explained in detail in [21]. With these considerations, we
define the gauge covariant field strength as

F(x, y) = dA(x, y)

+ A(x, y)
(
124 0
0 gs124

)
∧ A(x, y)

=

(
F (x, y) 0
0 Gcx, y)

)
, (2.35)

where the field strengths of the flavor and color gauge
fields are defined by

F (x, y) = dA(x, y) +A(x, y) ∧A(x, y),
G(x, y) = dG(x, y) + gsG(x, y) ∧G(x, y). (2.36)

Owing to the nilpotency of d, we can easily derive the
gauge transformation of F(x, y) to find it to be

Fg(x, y) = g̃−1(x, y)F(x, y)g̃(x, y). (2.37)

The algebraic rules defined in (2.10) and (2.34) and the
definition (2.36) yield

F (x, y) =
1
2
Fµν(x, y)dxµ ∧ dxν

+ DµΦ(x, y)dxµ ∧ χ+ V (x, y)χ ∧ χ, (2.38)

where

Fµν(x, y) = ∂µAν(x, y)− ∂νAµ(x, y)
+[Aµ(x, y), Aµ(x, y)],

DµΦ(x, y) = ∂µΦ(x, y) +Aµ(x, y)H(x, y)
−H(x, y)Aµ(x,−y)

V (x, y) = (Φ(x, y) +M(y))(Φ(x,−y) +M(−y))
−Y (x, y). (2.39)

Y (x, y) in this equation is an auxiliary field expressed as

Y (x, y) =
1
2

∑
i

(
b†i (x, y)M(y)M(−y)ai(x, y)

+a†
i (x, y)M(y)M(−y)bi(x, y)

)
, (2.40)

which becomes a constant field in the present construction
of the standard model. In contrast to the complicated form
of F (x, y), G(x) is simply written

G(x) = 1
2
Gµν(x)dxµ ∧ dxν

=
1
2
{∂µGν(x)− ∂νGµ(x) + gs[Gµ(x), Gµ(x)]}

× dxµ ∧ dxν . (2.41)

With the same metric structure on the discrete space
M4 ×Z2 as that used in [21] we obtain the gauge invariant
Yang–Mills–Higgs Lagrangian:

LYMH(x) = −Tr
∑
y=±

1
g2

y

〈F(x, y),F(x, y)〉

= −Tr
∑
y=±

1
2g2

y

F †
µν(x, y)F

µν(x, y)

+ Tr
∑
y=±

1
g2

y

(DµΦ(x, y))†DµΦ(x, y)

− Tr
∑
y=±

1
g2

y

V †(x, y)V (x, y)

− Tr
∑
y=±

1
2g2

y

G†
µν(x)G

µν(x), (2.42)

where gy is a constant related to the coupling constant
of the flavor gauge field, and Tr denotes the trace over
internal symmetry matrices including the color and fla-
vor symmetries and the generation space. The third term
on the right-hand side is the potential term of the Higgs
particle.

Let us turn to the fermion sector to construct the Dirac
Lagrangian. We begin by defining the covariant derivative
acting on the spinor field Ψ(x, y) in (2.4) which is the rep-
resentation of the semi-simple group of the corresponding
flavor and color gauge group. This covariant derivative is
defined by using the real structure operator J :

DΨ(x, y) = (d+ ÃD(x, y)+ JÃD(x, y)J†)Ψ(x, y), (2.43)

which we call the covariant spinor one-form, and ÃD(x, y)
is chosen to make DΨ(x, y) gauge covariant. ÃD(x, y) con-
sists of two parts, the gauge and Higgs boson fields,
namely

ÃD(x, y) = ÃD
µ (x, y)dx

µ + Φ̃D(x, y)χ, (2.44)

where the gauge boson part ÃD
µ (x, y) is defined as

ÃD
µ (x, y) =

(
124 0
0 gs124

)
Ãµ(x, y) (2.45)
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and the Higgs boson part Φ̃D(x, y) is defined as

Φ̃D(x,+) = Φ̃(x,+)g̃Y,

Φ̃D(x,−) = (Φ̃D(x,+))† = g̃†
YΦ̃(x,−). (2.46)

Here, g̃Y = diag(gY, 0) is the Yukawa coupling constant
later described in precise form. Since the role of dχ in
(2.38) is to induce the shift Φ(x, y) → Φ(x, y) +M(y) as
shown previously, we define its action on a fermion field
analogously as

dχΨ(x, y) = K̃(y)χΨ(x, y) = K̃(y)Ψ(x,−y)χ, (2.47)

where K̃(+) = M̃(+)g̃Y and K̃(−) = K̃(+)† correspond-
ing to the representation in (2.46). With these considera-
tions, (2.43) is rewritten as

DΨ(x, y) = (∂µ + Ãµ(x, y) + JÃµ(x, y)J†)Ψ(x, y)dxµ

+ (H̃D(x, y) + JH̃D(x, y)J†)Ψ(x,−y)χ, (2.48)
where

H̃D(x,+) =
(
Φ̃(x,+) + M̃(+)

)
g̃Y,

H̃D(x,−) = H̃D(x,+)†, (2.49)

from which

HD(x,+) = (Φ(x,+) +M(+)) gY,

HD(x,−) = HD(x,+)† (2.50)

follow. Here, we assume that the Yukawa coupling con-
stant gY commutes with the gauge function gf (x,−) so
that the gauge covariance of the field HD(x, y) is kept:

HD(x, y)g = gf (x, y)HD(x, y)gf (x,−y). (2.51)

This assumption is satisfied in the reconstruction of the
standard model in the next section. It should be noted
that, owing to the real structure operator J , we have two
equations,

Ãµ(x, y) + JÃµ(x, y)J†

=

(
Aµ(x, y) +Gµ(x, y) 0

0 Ac
µ(x, y) +Gc

µ(x, y)

)
, (2.52)

H̃D(x, y) + JH̃D(x, y)J†

=

(
HD(x, y) 0

0 HDc(x, y)

)
, (2.53)

which insure the gauge covariance of the covariant spinor
one-form DΨ(x, y) under the gauge transformation of
HD(x, y) given in (2.51). That is, as Ψ(x, y) is subject
to the gauge transformation

Ψg(x, y) = g−1(x, y)Ψ(x, y), (2.54)

with

g(x, y) = g̃(x, y) · (Jg̃(x, y)J†)
=

(
gf (x, y)gc(x, y) 0

0 gc
f (x, y)g

c
c(x, y)

)
, (2.55)

the covariance of DΨ(x, y),
DΨg(x, y) = g−1(x, y)DΨ(x, y), (2.56)

follows. In addition, since d + ÃD(x, y) + JÃD(x, y)J† is
Lorentz invariant, DΨ(x, y) is transformed as a spinor just
like ψ(x, y) under a Lorentz transformation.

In order to obtain the Dirac Lagrangian for the fermion
sector, the associated spinor one-form is introduced as the
counterpart of (2.43):

Ψ̃(x, y) = γµΨ(x, y)dxµ + iΨ(x, y)χ. (2.57)

With the same inner products for the spinor one-forms as
in [21]

〈A(x, y)dxµ, B(x, y)dxν〉 = Ā(x, y)B(x, y)gµν ,

〈A(x, y)χ,B(x, y)χ〉 = −Ā(x, y)B(x, y), (2.58)

and with vanishing other inner products, we obtain the
Dirac Lagrangian

LD(x, y) = iTr〈Ψ̃(x, y),DΨ(x, y)〉
= Tr

[
iΨ(x, y)γµ(∂µ + ÃD

µ (x, y) + JÃD
µ (x, y)J

†)

×Ψ(x, y)− Ψ(x, y)(H̃D(x, y)

+JH̃D(x, y)J†)Ψ(x,−y)
]
, (2.59)

where Tr is again the trace over internal symmetry ma-
trices including the color and flavor symmetries and gen-
eration space. The total Dirac Lagrangian is obtained by
summing (2.59) over y as follows:

LD(x) =
∑
y=±

LD(x, y), (2.60)

which is apparently invariant under the Lorentz and gauge
transformations.

With these preparations, we can apply the formula-
tion proposed in this section to the reconstruction of the
standard model.

3 Model construction

Based on the formulation proposed in the previous sec-
tion, we now reconstruct the standard model including
the YMH and fermion sectors. The reconstruction of the
YMH sector is actually identical to that in [21] and for
this reason we describe it only briefly.

3.1 The Yang–Mills–Higgs Lagrangian

The specifications of the flavor gauge fields Aµ(x, y), the
color gauge field Gµ(x, y) and the Higgs boson field Φ(x, y)
are presented in [21]. However, we here repeat those spec-
ifications, because they are crucially important in the re-
construction of the model based on our formulation in
GDG.
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We specify Aµ(x, y) in (2.17) by

Aµ(x,+) = − i
2

{
3∑

k=1

σk ⊗ 14Ak
Lµ + aBµ

}
⊗ 13, (3.1)

Aµ(x,−) = − i
2
bBµ ⊗ 13, (3.2)

where Ak
Lµ and Bµ are SU(2)L and U(1) gauge fields,

respectively, and σk (k = 1, 2, 3) are the Pauli matrices.
13 represents the unit matrix in the generation space and
a and b are the U(1) hypercharge matrices corresponding
to ψ(x,+) and ψ(x,−) in (2.1), and expressed in 8 × 8
diagonal matrix form as

a = diag
(
1
3
,
1
3
,
1
3
,−1, 1

3
,
1
3
,
1
3
,−1

)
. (3.3)

b = diag
(
4
3
,
4
3
,
4
3
, 0,−2

3
,−2
3
,−2
3
,−2

)
. (3.4)

Gµ(x,+) = Gµ(x,−) in (2.18) is written by

Gµ(x,±) = − i
2

8∑
a=1

σ0 ⊗ λ′aGa
µ ⊗ 13, (3.5)

where σ0 is 2 × 2 unit matrix and λ′a is 4 × 4 matrix
obtained from the Gell-Mann matrix λa by adding a fourth
line and column with all 0 entries:

λ′a =




0
λa 0

0
0 0 0 0


 . (3.6)

This form is necessary to avoid interactions between lep-
tons and color gauge fields. The Higgs field Φ(x, y) in
(2.20) is represented in 24× 24 matrix form by

Φ(x,+) =
(

φ∗
0 φ+

−φ− φ0

)
⊗ 14 ⊗ 13,

Φ(x,−) =
(
φ0 −φ+

φ− φ∗
0

)
⊗ 14 ⊗ 13. (3.7)

Corresponding to (3.7), the symmetry breaking function
M(y) is given by

M(+) =
(
µ 0
0 µ

)
⊗ 14 ⊗ 13, M(−) =M(+)†. (3.8)

With these specifications, the generalized field strength
F(x, y) in (2.35) can be written explicitly and from these
equations the YMH Lagrangian can be obtained, after
rescaling the gauge and Higgs fields, as follows:

LYMH = −1
4

3∑
k=1

(
F k

µν

)2 − 1
4
B2

µν + |Dµh|2

−λ(h†h− µ2)2 − 1
4

8∑
a=1

Ga
µν

†Gaµν , (3.9)

where the field strengths of flavor and color gauge fields
are written

F k
µν = ∂µA

k
ν − ∂νA

k
µ + gεklmAl

µA
m
ν , (3.10)

Bµν = ∂µBν − ∂νBµ, (3.11)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ,+gcf

abcGb
µG

c
ν , (3.12)

and the covariant derivative of the Higgs boson is ex-
pressed as

Dµh =

[
∂µ − i

2

(∑
k

σkgAk
Lµ + σ0 g′Bµ

)]
h, (3.13)

with the following definition of the un-shifted Higgs boson
h:

h =
(

φ+

φ0 + µ

)
. (3.14)

The Lagrangian in (3.9) is identical to the YMH
Lagrangian of the standard model.

3.2 The fermion sector

Let us turn to the construction of the Dirac Lagrangian
for the fermion sector. With the specifications of gauge
and Higgs boson fields given by (3.1)–(3.8) and after the
rescaling of the gauge and Higgs boson fields, we can ob-
tain the explicit form of an covariant spinor one-form in
(2.48). With the definition of the Dirac Lagrangian (2.60)
and after some calculations regarding charge conjugation
of the fermion fields, we find the Dirac Lagrangian for the
standard model to be

LD =
∑
y=±

i〈Ψ̃(x, y),DΨ(x, y)〉

= iψL(x)γ
µ

[
18∂µ − i

2

{
g

3∑
k=1

Ak
Lµ ⊗ 14 + g′σ0 ⊗ aBµ

+ gc

8∑
a=1

σ0 ⊗ λ′aGµ

}]
⊗ 13ψL(x) + iψR(x)γ

µ

×
[
18∂µ − i

2

{
g′bBµ + gc

8∑
a=1

σ0 ⊗ λ′aGµ

}]

⊗ 13ψR(x)− ψL(x)h
′ ⊗ 14 ⊗ 13gYψR(x)

− ψR(x)g
†
Yh

′† ⊗ 14 ⊗ 13ψR(x), (3.15)

where

ψL(x) =
√
2ψ(x,+), ψR(x) =

√
2ψ(x,−), (3.16)

and

h′ =
(
φ∗

0 + µ φ+

−φ− φ0 + µ

)
. (3.17)

The Yukawa coupling constant gY is explicitly given as

gY = diag(gu, gu, gu, gν , gd, gd, gd, ge), (3.18)

where gu, gd, gν and ge are complex Yukawa coupling
constants written by 3 × 3 matrices in generation space.
From the definitions of the fermion fields in (2.1), we easily
find the Dirac Lagrangian in (3.15) to be the Lagrangian
of the standard model.
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4 Concluding remarks

Using the real structure operator J , we reformulated a pre-
vious formulation [21] in the GDG to incorporate the color
gauge sector in the standard model in a simpler way. This
was accomplished by replacing the fermion field ψ(x, y)
by Ψ(x, y), which contains both the fermion and the anti-
fermion field as in (2.4). Although the Lagrangians ob-
tained in this way are identical to those obtained in our
previous formulation of GDG, the expression of the gen-
eralized gauge field becomes very simple as in (2.9) and
the basic formalism becomes very apparent. It would be
very interesting to apply the method in this paper to the
reconstruction of the left–right symmetric gauge model.
Such a study will appear in a future paper.
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